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INSTABILITY OF ELASTOPLASTIC PLANE FLOWS 

G. A. Korolev UDC 539.374:621.91 

Under conditions of high-speed elastoplastic deformation material flow inhomogeneities 
associated both with the presence of elastic forces, which may cause self-oscillating pro- 
cesses, and with localized adiabatic heating on a narrow interval of the highest strain 
rates, are found to occur [i]. Thermoplastic shear was investigated mathematically in [2, 
3], and a model of an elastoviscous fluid was considered in [4]. Here, the case of plane 
elastoplastic flow is studied with allowance for the thermal effects associated with adiabat- 
ic conditions and the convective removal of heat from the zone of intense deformation pro- 

cesses. 

The equation of motion of the medium and the energy balance equation take the form i. 
[3, 4]: 

ov ov t os ( 1 . 1 )  
oT ~ Ve ~p = T ~ ;  

per -~  + Ve~-~ = _Oy  ~ 

where V, S, 0, and F are the velocity, stress, temperature, and degree of deformation, re- 
spectively, Y is a coordinate, T is time, V c is the convective velocity component, p, cv, 
and % are the density, specific heat, and thermal conductivity coefficient, and ~ = 0.g- 
0.95 is a coefficient. 
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3, pp. 152-156, May-June, 1991. Original article submitted December 7, 1989. 

444 0021-8944/91/3203-0444512.50 �9 1991 Plenum Publishing Corporation 



The coupling equation 

I o s  OV OF 
a aT -~- OY aT (1.3) 

has been constructed with allowance for the elastic component (G is the shear modulus). 

The system (1.1)-(1.3) is closed by the rheological equation relating the stress with 
the temperature, the degree of deformation and the strain rate: S = f(O, F, 8F/ST). In par- 
ticular, we can take [2] 

S = c exp [ - -  a ( 0  - -  @~)] (bOF/OT) m F n. ( 1 . 4  ) 

Here, c, a, b, m, and n are rheological constants (b = 1 sec); 00" is the initial tempera- 
ture. We impose on the solutions of the system (1.1)-(1.4) the boundary conditions 

V(T, O) = O. V(T, h) = Vo, 

(00/OY)~=o = ~o [ e  (r ,  0) - -  e3],  ( o o / o Y ) y = h  = 0 
( ] . .5 )  

(V 0 is the constant velocity, a0 is the heat transfer coefficient, 
of the deformation zone). 

We write the system of equations (1.1)-(1.5) in the dimensionless form: 

Ov/c)t + Pav/Oy = AOo/Og; 

O0/Ot + POO/Og = (l/Bi)O~O/Og 2 + • 

Oa/Ot = avlOg - -  O?/Ot; 

o = 5 exp (--O)(O?/Ot)ra?~; 

v(t, O) = O, v(t, 1) = t ,  

(O0/Oy)v= o = Bi 0(t, 0), (80/@)v= ~ = O. 

and h is the dimension 

(1.6) 

( 1 . 7 )  

(1.8) 

(1.9) 

( 1 . 1 o )  

The dimensionless variables take the values: t = T/T0, y = Y/h, ~ = F/FI, v = V/V0, o = S/ 
(GDT0), e = a(@ - 00") , T o = cv#h/a0, FI = ToD, D = V0/h, A = cv20G/a02, K = ~cvPaV02G/a02, 

6 = c~0(bD)mFzn/(G • V0cv0) , Bi = a0h/Z, P = VcT0/h = Pe/Bi (Pe and Bi are the Peclet and 
Blot numbers). 

2. When P = 0 the system (1.6)-(1.8) can be simplified: 

A o"a o2a a 2v. ( 2 . 1  ) 
av ~ = ~ -6 Ot---:~, 

o0 I d20 a? 
at -- -BFI ~y "~- + x~ (2.2) 

Superimposing on the basic solution U 0 small perturbations of the form: 

U = U o  + U '  = {oo, 0o,?o} + {~', 0 ' , ? ' }  = {ao, 0o,?o} + { ~ * , 0 * , ? * } o x p ( a t  + ~kv) 

and  l i n e a r i z i n g  t h e  s y s t e m  ( 2 . 1 ) ,  ( 2 . 2 )  w i t h  r e s p e c t  t o  t h e  p e r t u r b a t i o n s ,  we h a v e  

0~~ = a~~ + ~ ( 2 . 3 )  
A 7 ~ at ~' 

ay' a?o a0' i a20 ' + • -g/- + • ( 2 . 4 )  
ot Bi @2 

Starting from the existence of a nontrivial solution for ~*, 8*, having first eliminated the 
stress perturbation amplitude 

a* = QoY* + ~Boy* - -  PoO* 

(Qo = (oa/@)o = n%/%,  No = (#a/O~)o = m%/vo, 
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P0 =--(Oe/00)0 = ~0,?0~O?0/0t) 

from the system (2.3), (2.4), we obtain the characteristic equation [3] 

cZ4Ro + (za( 1 + Qo - Po• + k2Bo/Bi) + 

+ ~z2[x~oPo + k2(l,/Bi + Qo/Bi + ABo)] + 
+ czk2(Ak~Bo/Bi + AQo - -  PoAx%) + k~AQo/Bi = O. 

(2 .5 )  

From the Routh-Hurwitz conditions it follows that as k + ~ the roots of the Eq- (2.5) 
will always be negative, i.e., the system is stable. For k = 0 when the inequality 

Po• + Qo) > t (2 .6 )  

is satisfied the system loses stability. 

For determining the maximum of ~ we equate the derivative d~/dk 2 to zero and find 

k2 = (PoA%• o -- AQo/Bo) -- a [(t + Qo )~Bi Bo) + A] -- a2 Bi 
2(aA/Bi+ A/Bi)" (2 .7 )  

Having investigated the characteristic equation (2.5) for the extremum, taking into account 
the fact that the expression (2.7) is always positive, we have one more criterion of insta- 
bility: 

Poeo • > Qo + 2 V  Xi, oPoQo/(A Bi). (2 .8 )  

The satisfaction of inequality (2.8) indicates the predominance of softening of the material 
over strain hardening; in this case we have the estimate for the maximum of the eigenvalue ~: 

2M~ 

r <~ M ----- V (M2 + t/o) 2 + 4RoM1/(A Bi) + (M 2 -~- Bo) 

(M1 = Po% • -- Qo, M2 = (l + Qo)/(ABi)). 

Since in most cases of practical importance the quantity s = I/(A Bi) << i, M can be expanded 
in powers of the small quantity e: 

M Q~ (Polo i,] + oi 2, 

We write (2.6) and (2.8) in dimensional form: 

~aSo > G + n %; 
Pcv -~o (2 .9 )  

r~ V 15i'~ ra 
Pcvn > l + 2 Oc~-n " (2 .10)  

The inequality (2.10) can be simplified by taking into account the smallness of the second 
term on the right and the relation (1.4): 

r n+l  ncvpexp (O-- O0)] 
apc~ 

By strengthening the latter inequality it is easy to obtain the criterion proposed in [2]. 

Inequalities (2.9) and (2.10) determine the intervals of values of the parameters of 
the deformation processes for which loss of stability is possible. The former determines 
the instability associated with the developed elastic properties of the material, which is 
expressed as periodic falls in stress with simultaneous increase in temperature. The occur- 
rence of self-oscillation depends to a large extent on the quantity G. The domain of reali- 
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zation of the criterion (2.9) is contained in the domain of the parameters satisfying the 
criterion (2.10), which is associated with the possibility of the stability of the flow being 
disturbed as a result of plastic heating after a certain degree of deformation has been 
reached. 

3. As follows from (2.10), for P = 0, n = 0 the necessary condition of loss of stabil- 
ity is satisfied, i.e., strain saturation leads to a flow state in which a further increase 
in the degree of deformation will not lead to a subsequent hardening of the material. The 
general (sufficient) instability criterion will contain the wave number k, which depends on 
the boundary conditions to which the basic solution (I.i0) is subjected. From the character- 
istic equation (2.5) and (1.9) there follows 

k2m exp 0 o ( 3 .  l) 
(7~ > Bi • 

The sufficient criterion for self-oscillation takes the form: 

k~m5 exp 0 o exp 200 
•  . + --" (3.2) 

Bi (7o) m+l (+o) 2m 

From (3.1), (3~2) we obtain the averaged estimates: <6 > k2m/Bi, ~6 > k2m/Bi + 1/6. Using 
the averaging F ~ V0/h, we can strengthen the inequality (3.1) and estimate the critical ve- 
locity sufficient for the development of instability: 

v.  > h ( +:> ~ ]  (3 .3)  

In the case of metal deformation the hardening parameter m is fairly small (m < 0.I) and 
the estimate (3.3) can be simplified: 

V* > (k2m~,)/(ach~). (3.4) 
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For testing the stability of the steady-state solutions, found analytically from the 
basic system of equations (as t + ~), we used the Galerkin method. In order to improve the 
accuracy of the calculations, we chose an orthogonal system of basis functions for the series 
expansion of the small perturbations superimposed on the solutions. The eigenvalues of the 
differential operator matrix were found after reducing it to almost diagonal form. The de- 
pendence of k 2 on Bi is shown in Fig. i. 

4. The steady-state solution of the system (1.6)-(1.10) with n = 0 and constant P is 
found as a result of the numerical integration of the initial system of equations by the ma- 
trix sweep iteration method. In practice, the values of P are small (often P << i), which 
makes it possible to carry out the expansion in a small parameter in the same way as in [5] 
and thus simplify the numerical realization of the problem by reduction to the usual Runge- 
Kutta scheme for determining the second term of the expansion. As follows from the numeri- 
cal calculations using the Galerkin method, the convective removal of heat from the deforma- 
tion zone leads to a considerable narrowing of the parametric interval of existence of insta- 
bility. Using (3.4) as the rheological relation, we calculated k 2 as a function of m and 
the Peclet number. The results of the calculations are reproduced in Fig. 2: the curves 
1-5 correspond to Pe = 0.i, 2, 5, 7, and i0. On the basis of the above-mentioned calcula- 
tions we determined the critical speeds of metal working by continuous orthogonal cutting 
necessary for the formation of a sawtoothed (cyclic) [6] chip. Figure 3 shows the limits 
of transition to unstable chip formation associated with the localized thermoplastic shear 
effect [i] for 2KhI8NgT steel (when m = 0.06) as a function of the values of the working 
speed V,, the principal leading cutter angle ~, and ~, the angle of inclination of the con- 
ventional shear plane. Curves 1-3 correspond to h =~ 1.2-10 -4 , 1.0.10 -4 , and 0.8.10 -4 m - 
the linear dimension of the interval of principal strains in the chip formation zone (equal 
to approximately one tenth of the thickness of the cut); ~ = 20 and 35 ~ for the continuous 
and broken curves, respectively. The regions of unstable cutting lie to the right of the 
curves. 

LITERATURE CITED 

i. R. F. Recht, "Destructive thermoplastic shear," Trans. ASME, Ser. E, 31, No. 2 (1967). 
2. T. J. Burns, D. E. Grady, and L. S. Costin, On a Criterion for Thermoplastic Shear In- 

stability, Am. Inst. Phys., New York (1982). 
3. Y. L. Bai, "Thermoplastic instability in simple shear," J. Mech. Phys. Solids, 30, No. 

4 (1982). 
4. V. M. Volchkov, M. A. Vinogradov, and A. A. Kozlov, "On the stability of elastoplastic 

flows," Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1977). 
5. G. A. Korolev, "Mass transfer between a spherical particle and a fluid at low Peclet 

numbers," Inzh.-fiz. Zh., No. 1 (1982). 
6. N. V. Talantov and N. P. Cheremushnikov, "Temperature-deformation nature of the cutting 

process," in: Technology and Automation of Machine-Building [in Russian], Volgograd 
(1977). 

448 


